时序数据库 - 用户案例

稳定、高效:TDengine 在阿诗特智慧能源数据管理云平台中的应用

作为一个新项目,RTC Power Cloud 舍弃了旧有的能源数据库技术体系架构,直接在最前沿的技术中选型。就具体的业务场景而言,我们需要一款高性能的时序数据库产品来存储和处理时序数据。我们关注了 TDengine、Apache IoTDB 以及阿里云时序数据库等几款产品,最终经过详细的对比和考虑,我们做出了最终的决定——TDengine。

TDengine 助力国产芯片打造“梦芯解算”,监测地质灾害 24 小时无间断

从 2021 年 10 月运行至今,共创建了 2 张超级表以及近百张子表,总数据量超过 2.5 亿条,压缩后的数据量大小为 200G 左右。对近亿行的超级表进行统计操作,仅用了 1.9 秒左右就返回了结果,充分证明了在实际应用中 TDengine Database 也确实表现卓越。

TDengine 在“一图一库”中的应用,助力交通运输实现信息化转型

log.dn 表中数据采集的周期是 30 秒,由此可知,dn1 的实测瞬时最大写入量是 770 条/秒。加之五节点的集群在分布式插入的架构下,770*5=3850 条/秒的数据插入效率是完全可以保障的,完全满足了我们业务需求。至于本集群的插入性能上限,应在此实测值的 100 倍以上,并且有极大的增长空间。

减少计算、简化架构——TDengine 在灌区信息化平台中的应用

禹为科技在现代灌区信息化平台的建设过程中,经历了数据库&定时任务的架构、以流式计算为核心的架构和以 TDengine Database 为核心的架构三个阶段,最终选用 TDengine 帮助其对水位、流量、水量等实时指标数据分析。

构筑生态环境实时数仓大数据平台,TDengine 如何处理百亿行级大数据?

基于政务信息化自主可控的要求,在与同类型工业大数据时序数据库进行性能对比后,广东环境科学研究院的生态环境数据治理服务项目选用 TDengine Database 强化了其感知层建设,精准及时地对污染排放中的问题进行检测和预警。本文讲述了他们的选型和建模思路以及落地后的效果展示。

从 OpenTSDB 到 TDengine,至数物联网IoT平台技术改造之路

至数物联网平台场景多、数据模型复杂,伴随着业务需求的不断迭代及数据量的不断上涨,原有的 OpenTSDB+MySQL 的组合逐渐力不从心,局限性日益凸显。在对 TDengine Database 进行充分了解与调研后,基于 TDengine 对至数摇光进行了彻底性的改造。

助力地质灾害专业监测,他们选择将 Oracle 替换为 TDengine

在本项目中,TDengine Database 展现出了强大的读写性能和数据压缩能力,聚合类查询速度非常快,也帮助我们有效降低了机器使用成本。超级表、子表、标签、时间窗口、状态窗口等概念非常适配物联网大数据应用场景,相信随着产品功能的越加完善,TDengine 未来潜力无限。

TDengine 助力智慧燃气,支撑数百万智能终端的接入管理

TDengine Database 在规则引擎场景下,提供了很好的查询性能,是实现实时告警和监控服务的重要一环。最终我们采用了3节点8核16G满足整体业务需求,系统可以根据时间段范围、针对单个设备进行数据上报的查询功能,且支持按照小时用量、日用量、月用量、年用量四个维度进行统计分析;目前单个超级表的压缩率为2.5%。